Development of Novel 3D Acoustic Borehole Integrity Monitoring System

Cristian Pantea¹, Eric S. Davis^{1,2}, Dipen N. Sinha¹, Craig Chavez¹, Vamshi Chillara¹, Yu Chen¹, Lianjie Huang¹, Barbara Kutchko³, Dustin Crandall³, Roger Chen⁴, Douglas A. Blankenship⁵, Jiann-Cherng Su⁵, Hector J. Santos-Villalobos⁶, Yarom Polsky⁶, Roger Kisner⁶

- ¹Los Alamos National Laboratory, Los Alamos, NM 87545
- ²University of Houston, Department of Physics, Houston, TX 77204
 - ³National Energy Technology Laboratory, Pittsburgh, PA 15236

⁵Sandia National Laboratories, Albuquerque, NM 87185

⁶Oak Ridge National Laboratory, Oak Ridge, TN 37831

⁴West Virginia University, Department of Civil and Environmental Engineering, Morgantown, WV 26506 Vest Virginia University

Introduction

Primary goal: fill the existing technology gap between conventional sonic tools and long range sonic imaging tools in providing a robust ability to image the near-borehole environment. The Problem:

Defects/fracture detection beyond casing with high resolution. No current techniques.

Scientific Approach (cont.)

Advanced image processing techniques:

(1) LANL's Elastic-Waveform Inversion,

(2) LANL's Least-Squares Reverse-Time Migration techniques,

(2)

Experimental results (cont.)

Imaging with parametric source

Open borehole configuration (Plexiglas-lined cement barrel) Reflection seismology – Common azimuth representation

Acoustic-wave migration imaging in a simulated borehole

Picture from S.E. Gasda, Environ Geol (2004) 46: 707-720 Long-term objectives:

Develop a complete 3D imaging system, based on:

- unique acoustic source (low frequency, highly collimated, broad-band: 10-150 kHz, high power)
- advanced image processing.

Investigate effectiveness of next generation wellbore completion technology such as foamed cements.

evelop & demonstrate th ethod on simple wellbor iate method on n end method be

Outcome:

• improved imaging resolution around the borehole and

Attenuation $\sim f^{n}$

- extended investigation range beyond the wellbore casing
- First year: Lay out the foundation for a comprehensive imaging system based on the relevant underlying physics (wave generation and propagation, interaction with defects, image processing, laboratory experimental validation of concepts)
- The target investigation range for the first year: wellbore casing and casing-cement interface.

Scientific Approach

(3) ORNL's model-based iterative reconstruction (MBIR).

Foamed cements (w/ NETL)

(1)

- Corroborating characterization information
 - Acoustic (LANL) $\leftarrow \rightarrow$ CT (NETL) Acoustic characterization: sound speed, attenuation, acoustic nonlinearity, elastic moduli
- **Realistic environments (w/ Sandia)**
 - Initiate imaging experiments in more realistic simulated wellbore environments

Cased borehole configuration (Stainless Steel-lined cement barrel) Reflection seismology – Common azimuth representation

Excitation:

500

1000

500

42.2 kHz shaped pulse Azimuthal data collected every 5 deg, for a 180 deg span.

Excitation: 111.85 kHz shaped pulse

Waveform No.

Resolution determination

Open borehole configuration (Plexiglas-lined cement barrel)

Investigated three different acoustic sources:

Bessel-like source: Ο

Low frequency (10-150 kHz) Frequency-independent beam width Reduced side lobes

Large bandwidth (140 kHz) Limited diffraction during propagation

Experimental results

- CT scans acquired of well/cement/rock NETL system
 - Well thickness varied to ensure minimal imaging artifacts during scanning. Scan resolution 27.8 micron.
 - Multiple voids/fractures created in cement during process to test ability to capture imperfections in cement 2 inch

Foamed cement properties

Case (Foam Quality)	10%	20%	30%
P-Wave Velocity ⁺ (^m / _s)	3055.5	2525.4	2415.4
Mass Density ⁺ (^{kg} / _{m3})	1696.9	1446.7	1304.0
Poisson's Ratio*	0.18	0.19	0.2
Young's Modulus (GPa)	14.6	8.40	6.85

Summary

- Built and experimentally validated three different acoustic sources that provide a collimated beam of low frequency.
- Beam collimation is maintained after passing trough an inhomogeneous scattering medium (concrete barrel).
- Gained insight in understanding foamed cements, by determining elastic properties and CT scans.
- Demonstrated imaging capabilities of the system, in both open- and cased-borehole, for different induced defects (groove, detachment, fluid-filled void pocket, casing).
- Determined a resolution as low as 3 mm.
- Long-term plan: refine and enhance the capabilities of the 3D

Los Alamos National Laboratory

LABORATOR